Step of Proof: fun_with_inv_is_bij
12,41
postcript
pdf
Inference at
*
1
1
2
1
I
of proof for Lemma
fun
with
inv
is
bij
:
1.
A
: Type
2.
B
: Type
3.
f
:
A
B
4.
g
:
B
A
5. (
g
o
f
) = Id{
A
}
6. (
f
o
g
) = Id{
B
}
7.
b
:
B
f
(
g
(
b
)) =
b
latex
by ((With
b
(EqHD 6))
CollapseTHENA ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 4:n
C
)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
6.
b
:
B
C1:
7. (
f
o
g
)(
b
) = Id{
B
}(
b
)
C1:
f
(
g
(
b
)) =
b
C
.
origin